Prey-Predator Interaction between *Orius albidipennis* (Hemiptera: Anthocoridae) and *Thrips tabaci* (Thysanoptera: Thripidae)

Ahmed H. El Kenawy¹; Wael E. A. El-Sheikh² and Hazem A. Abul Fadl¹

¹Biological Control Research Department, Plant Protection Research Institute, Agricultural Research Center-Giza, Egypt
²Department of Plant Protection, Faculty of Agriculture, Beni-Suef University, Egypt

Received: 14/3/2021

Abstract: Thrips attacks different types of plants including buds, leaves and flowers where, heavy pest infestation can degrade the quality of the agricultural products that can reach the half. The study aimed to improve the understanding of prey-predator interaction between *Orius albidipennis* nymphs and *Thrips tabaci* nymphs and the degree of the response of the predator change when they feed on different prey densities. The predator *O. albidipennis* nymphs were collected from the colony reared in the biological control Res. Dep. ARC. Giza, Egypt, and starved for 4 h in glass vials containing small wet cotton with water without preys. *Thrips tabaci* nymph were introduced as prey into small Petri dishes at three densities (10, 20 and 30 nymphs), respectively. Starved predators were transferred to the experimental arena using smooth hair brush. The number of dead or live nymphs was counted. 25 replicates of each prey density were performed. The results showed that at densities of 10, 20, and 30 nymphs per arena, the consumed prey significantly increased with increasing prey density. When only 10 thrips nymphs were provided, *O. albidipennis* consumed a mean of 6.8±1.2 thrips nymphs per predator per day, even when 20 thrips nymphs were provided the consumption increased to 15.1±1.7 and increased to 26.5±2.9 when 30 thrips nymphs were provided, as a result, the obtained data indicates that the predators can efficiently find the thrips nymphs at low densities. However, the handling time (Th) of *O. albidipennis* which is sometimes consider as a good indicator of the predation rate that was the shortest at third nymphal instar than first nymphal instar when fed on nymphs of *T. tabaci*, respectively. The results demonstrated the calculation of the attack rate (à) and handling time (Th) significantly declined as stages reseed.

Keywords: Biological control, Predators, Predation -Onion thrips, Pest management, Arthropods interaction

INTRODUCTION

In recent decades, the use of natural enemies played an important role through many biological control programs to reduce the impacts of pesticide residues, and pest resistance caused by insecticide, (Bale et al., 2008). A wide variety of fruits, vegetables, flowers, and field crops are attacked by the Onion thrips. *Thrips tabaci* Lindeman (Thysanoptera: Thripidae) is a significant pest. This species is highly polyphagous and has been reported in more than 300 species, with at least 25 families feeding on several cultivated crops (Khalil et al., 2016). In particular, the Alliaceae family, such as onions and garlic, and in the Brassicaceae family, such as radish, cabbage and coliflour (Pourian et al., 2009). It causes significant damage directly by feeding and indirectly through the transmission of tomato spotted wilt virus (TSWV). Its population can exceed 100 thrips / plant during the elevated infestation time (Ullah et al., 2010). Control of thrips is typically carried out by using of chemical applications, which may explain the widespread of pesticide resistance occurrence in onion thrips (Jensen, 2000). Due to its small size and cryptic habits, it is difficult to control this pest with insecticides (Richter et al., 1999). The species is well adapted to elevated temperatures (Safaei et al., 2015) and has no reproductive diapause caused by photoperiods and has strong foraging activity (Sobhy et al., 2010). *Orius* spp. (Heteroptera: Anthocoridae) can feed on various soft bodied arthropods, including aphids (Reitz et al., 2006). Among the genus, *Orius albidipennis* Reuter is a common predator in several regions of Iran (Hassanzadeh et al., 2015) and its ability as a potential biocontrol agent has been reported especially under greenhouse conditions (Rajabpour et al., 2011; Salehi et al., 2016). While some species of Orius are mass produced for augmentative biological control, growing concerns over the introduction of non-native species limits where any particular species may be deployed (van Lenteren et al., 2003; Louda et al., 2003). As a result, there is increased interest in other species of Orius that could be deployed as biological control agents in their native ranges. This interest is reinforced by the recognition that biological control agents also must be well acclimatized to environments where they would be deployed (Cocuzza et al., 1997). *Orius albidipennis*, a species of Orius of particular interest as a biological control agent, is commonly found in large numbers in various agricultural habitats throughout the Mediterranean basin, the Atlantic zone of Western Europe, and East Africa (Fritsche and Tamo, 2000). Also Chyzik and Ucko 2002 reported that *O. albidipennis* succeed to control thrips in pepper fields in Israel. In Egypt, *O. albidipennis* is very common throughout the country, south to Wadi Halfa, in the desert, and in cultivated areas, especially in corn and cotton fields. Functional response defines as the number of prey successfully attacked per predator as a function of prey density (Hamdan, 2006). It describes the way a predator responds to the changing density of its prey (Atlihan, 2010). Many predators that have been released as bio control agents have shown to exhibit a type II response on their prey (Xiao and Fadamiro, 2010). Prey stage preference of some anthocorid bugs were studied by some authors. For example, prey stage preference of *Orius insidiosus* Say (Heteroptera: Anthocoridae) to different life stages of *Frankliniella occidentalis* Persgande (Thysanoptera: Thripidae) (Baez et al., 2004) and *Montandomiola confusa* Streito & Matoq (Heteroptera: Anthocoridae) to different life
was previously investigated. In all of the studies, the predatory bugs showed obvious prey preference to some life stages of their prey. The aim of this study was to define the interaction of *O. albidipennis* nymph to different nymph densities of *Thrips tabaci* adults under laboratory conditions in order to improve the understanding of prey-predator interaction and how does the response of the predator change when they feed on different prey densities and their potential for suppressing pest populations in biological control programs.

MATERIALS AND METHODS

Thrips colony

The onion thrips, *Thrips tabaci* specimens were collected from the infested onion plants, (*Allium cepa L.*) planted in Shibin El Qanater city - Qalyubia Governorate - Egypt. Specimens were sent to insect classification unite in the Plant Protection Institute to be carefully identified. Screening potted plant was used to rear the thrips colony. Following the method reported by Madadi et al. (2006), the Onion thrips, *T. tabaci*, was reared on bean plants (*Phaseolus vulgaris L.* cv. Montano) under laboratory condition of 25°C, 60% RH, 16:8h L:D. Three weeks after planting when the two first leaves appeared, the petioles were cut and leaves subsequently placed in the small vials (approx. 20 ml) filled with water. Bean leaves containing thrips eggs were put in similar containers until hatching.

Rearing of *Orius albidipennis*

The colony of *O. albidipennis* was established from the biological control Res. Dep. ARC, Giza, Egypt. Adults and nymphs were maintained in plastic jars, which were covered with muslin that was held in place by rubber bands. Each jar was provided with enough quantities of *T. tabaci*, a piece of cotton that had been soaked in a 10% honey solution and bean pods (*Phaseolus vulgaris L.*) as an oviposition substrate. Bean pods with newly laid eggs were removed and replaced daily. Jars were checked daily for hatching, after hatching nymphs were provided with *T. tabaci* and small balls of foam to reduce cannibalism. Colonies were maintained at 26±1°C and 60±10% RH.

Experimental procedure

The predator *O. albidipennis* nymphs were collected from the colony reared in the biological control Res. Dep. ARC, Giza, Egypt, and starved for 4 h in glass vials (7 cm × 2 cm) containing small wet cotton with water without prey. *Thrips tabaci* were introduced as prey into small Petri dishes at three densities (10, 20 and 30) nymph, respectively. Starved predators were transferred to the experimental arena using smooth hair brush. The number of dead or live thrips nymphs was counted. 25 replicates of each prey density were performed. Control with no predator as also replicated 25 times for each prey density to consider the natural mortality of the prey. They assessed with a Stereomicroscope.

The functional response of predators to different prey densities was expressed by fitting the data to Holling’s equation (Holling, 1959)

\[N_a = \frac{\hat{a}TN}{1 + \hat{a}ThN} \]

Where: *N_a* defines the number of prey attacked by a predator per time unit, \(\hat{a} \) is search rate of a predator, *T* is the total time of exposure (1 day in this experiment), *N* is the original number of prey items offered to each predator at the beginning of the experiment, and *Th* is handling time for each prey caught (proportion of the exposure time that a predator spends in identifying, pursuing, killing, consuming prey. Search rate, handling time and their standard errors were estimated from linear regression of disc equation. The relationship between the mean number of consumed prey versus original number of prey offered to each predator at the beginning of the experiment (prey consumed)/(prey density x 100) for all larval instars were estimated.

Data analysis

An independent *t*-test was used to evaluate differences in the number of thrips adults consumed by *O. albidipennis* at each nymph density. Data expressed in descriptive table as Mean±SD using SPSS v 23.0 statistical software. Data subjected to analysis of variance (Two ways ANOVA) through applying holme-sidak method using sigma plot V12.4 statistical software.

RESULTS AND DISCUSSION

The prey consumption by nymph of *O. albidipennis* in different combinations increased curvilinearly with prey density in all the three combinations were calculated and presented in Table (1).

The data analysis includes the mean ± SD for all nymphal instars in different prey density. From the results, despite different prey density, starting with the record of the highest predation rate at the first nymphal instar, then followed by a decrease in the rate of predation until the third nymphal instar, followed by an increase in predation rate at fourth nymphal instar, and finally decrease in predation rate for fifth nymphal instar except for the 30 prey density group showing slightly increase in predation rate.

However, there are trends in our data suggest that the rate of prey consumption by a predator rises as prey density increases, but eventually levels off at an asymptote at which the rate of consumption remains constant regardless of increases in prey density. The results showed that at densities of 10, 20, and 30 nymphs per arena, the consumed prey significantly increased with increasing prey density. Extensive results carried out show that *O. albidipennis* was able to prey *T. tabaci*, and its predation showed a decelerating to increasing *T. tabaci* nymph number. When only 10 thrips were provided, *O. albidipennis* consumed a mean of 6.8±1.2 thrips nymphs per predator per day, even when 20 thrips nymphs were...
provided the consumption increased to 15.1±1.7 and increased to 26.5±2.9 when 30 thrips nymphs were provided, which indicates that the predators can efficiently find the thrips nymphs at low densities (Fig. 1).

The difference in the mean values among the different levels of prey density is greater than would be expected by chance after allowing for effects of differences in nymphal instar. Results provides a good fit to the data when 30 vs.10 prey density (p <0.001), 30 vs. 20 prey density (p <0.001), 20 vs. 10 prey density (p <0.001). There is a statistically significant difference (P <0.001). Statistical analysis highlights that within 10 prey density group there was no significant differences (P> 0.05) respectively. Instead of 20 and 30 prey density groups for different nymphal instars. Another promising finding was that, the prey density played important role in predation rate showing significant differences (P< 0.05) between different density groups for different nymphal instar (t= 4.554, p<0.001 - t= 3.669, p=0.001- t= 0.885, p= 0.377), (t= 6.421, p<0.001 - t= 3.325, p= 0.002- t= 3.096, p= 0.002), (t= 6.574, p<0.001- t= 3.456, p= 0.001- t=3.118, p=0.002), (t=5.471, p<0.001- t=3.309, p=0.002 - t=2.162, p=0.032) and (t=6.656, p<0.001- t=3.478, p=0.001- t=3.178, p=0.002) were recorded for first, second, third, fourth and fifth nymphal instar respectively.

Table (1): Descriptive statistics for the predation for different prey density groups at different age groups

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Desc. Stat.</th>
<th>First nymphal instar</th>
<th>Second nymphal instar</th>
<th>Third nymphal instar</th>
<th>Fourth nymphal instar</th>
<th>Fifth nymphal instar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SE</td>
<td>7.3±0.1</td>
<td>6.5±0.4</td>
<td>6.3±0.3</td>
<td>6.9±0.3</td>
<td>6.5±0.2</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.7</td>
<td>1.3</td>
<td>1.07</td>
<td>1.18</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Mini.</td>
<td>6.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.30</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>8.50</td>
<td>8.50</td>
<td>8.00</td>
<td>9.30</td>
<td>8.70</td>
</tr>
<tr>
<td>10 prey group</td>
<td></td>
<td>Mean ± SE</td>
<td>15.3±0.3</td>
<td>15.2±0.3</td>
<td>15.08±0.3</td>
<td>15.3±0.5</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.19</td>
<td>1.40</td>
<td>1.5</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>Mini.</td>
<td>13.50</td>
<td>11.70</td>
<td>11.00</td>
<td>10.00</td>
<td>11.70</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>17.50</td>
<td>18.00</td>
<td>17.30</td>
<td>19.70</td>
<td>19.50</td>
</tr>
<tr>
<td>20 prey group</td>
<td></td>
<td>Mean ± SE</td>
<td>26.7±0.4</td>
<td>26.2±1.2</td>
<td>25.7±0.4</td>
<td>26.3±1.0</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.4</td>
<td>3.3</td>
<td>1.6</td>
<td>3.5</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>24.0</td>
<td>17.70</td>
<td>23.00</td>
<td>22.00</td>
<td>24.70</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>29.0</td>
<td>30.00</td>
<td>28.50</td>
<td>30.00</td>
<td>28.00</td>
</tr>
</tbody>
</table>

Prey-predators interaction

At higher prey density, the predator search rate (per predator per day) declined, showing that O. albidipennis needed to spend less time searching for prey at higher prey densities (Fig. 2). The number of prey nymph consumed by the fifth nymph instars of predator increased significantly as predator development. The percentage of prey consumed of each nymphal instar was negatively correlated with the offered prey densities. Obtained results were fitted to second degree of polynomial.

Estimated functional response parameters, when the O. albidipennis preys on T. tabaci nymph, are shown in Table (2). The handling time (Th) of O. albidipennis, which is sometimes a good indicator of the predation rate, was the shortest at third nymphal instar than first nymphal instar when fed on adults of T. tabaci, respectively. Obtained results were fitted to second degree of polynomial with R2 value of 0.99 for the 2nd, 3rd, 4th, 5th and 0.98 for the 1st nymphal instar.

The greatest theoretical maximum predation rate (1/Th) was estimated for the 3rd nymphal instar reaching 86.96 adult/day followed by the 4th and 5th nymphal instars being 74.07 and 48.78 eggs/day, respectively.

The results demonstrated the calculation of the attack rate (a) and handling time (Th) significantly declined as stages reseed. Those values have been associated with the changes on the prey and predator through their developmental stage. It has revealed generally increasing in the attack rate and decreasing in handling time with developing predator when fed on a particular stage of the prey.
Fig (1): Relationship between search rate of *Orius albidipennis* nymph and density of *Thrips tabaci* nymph under laboratory condition

Fig (2): Predation capacity of *Orius albidipennis* nymph and density of *Thrips tabaci* nymph under laboratory condition
Mendes et al. (2002) found that high prey consumption by orius may occur to fill a nutritional gap caused by low quality prey. In contrast, a relatively small amount of E. kuehniella eggs, a nutritionally high quality prey type, is sufficient to successfully mass rearing of Orius species (Yano et al., 2002; Mendes et al., 2002). However, other factors such as prey mobility, or prey defense tactics are important factors to consider in prey selection and attack by a predator (Eubanks and Denno, 2000). Biological control plays an important role in thrips management using Orius, since chemical treatments are not always able to keep thrips populations under the economic threshold. In fact, Orius proved an effective biological control agent with prey/predator ratios = 50, as reported in prediction models (Sabelis and van Rijn, 1997), and consistent with both laboratory and pepper field experiments with O. Insidiosus preying on F. occidentalis (Xu et al., 2006; Funderburk et al., 2000).

Many predators that have been successfully used as biocontrol agents for important pests in greenhouses exhibit a type II response to their prey (Pervez and Omkar, 2005; Xiao and Fadamiro, 2010). The results clearly indicate that the functional responses of O. albipennis to different densities for different nymphal instars of Thrips tabaci are of type II. There is no study on the functional response of O. vicinus in the literature to the best of our knowledge. Marta et al. (2000) reported that O. laevigatus exhibits Type II responses when fed nymphs of T. vaporariorum and F. occidentalis. In the literature, there are many studies on different species of Orius preying on greenhouse pests, which report type II functional responses. For instance, O. Niger and Orius minutus (L.) exhibit type II functional responses when fed adults of T. urticae and 2nd instar individuals of the onion thrips (Fathi and Nouri-Ganbalani, 2010), Orius albipennis (Reuter) fed eggs and 3rd instar nymphs of B. tabaci (Shahpouri et al., 2019), Orius sauteri (Poppius) fed adults of Megalurothrips usitatus (Bagnall) Thysanoptera: Thripidae) (Liu et al., 2018), O. albipennis fed adults of Megalurothrips jenardi Trybom (Thysanoptera: Thripidae) (Gitonga et al., 2002) and Orius tristicolor (White) fed eggs of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) (Queiroz et al., 2015). In contrast, O. albipennis and Orius strigicollis (Poppius) fed eggs of T. urticae (Jalalizand et al., 2012; Banihashemi et al., 2017).

Functional response studies reported that the numbers of second instar and adult of M. sjostedi killed by O. albipennis adults increased with an increase in prey density and temperature. Similar observations were obtained by (Kohno and Kashio 1998) and for O. sauteri (Poppius) and Sericotherips variabilis (Beach), respectively. Thrips have the ability to move their abdomen and emitting a drop of fluid (Lewis, 1997). This is likely to be the reason for the higher attack rates against the larvae and higher handling time for the adult thrips.

CONCLUSIONS

In conclusion, the present study has improved our understanding of the T. tabaci - O. albipennis interaction in the laboratory. The results presented in these studies suggest that O. albipennis could be considered for augmentative biological control of thrips in onion fields and they may have some value as a first step in estimating predatory capacity, but recommend that additional studies be conducted in a more field environment. In addition, this experiment done in the laboratory in small arenas that is very different from field conditions. Thus, further studies regarding the biological parameters and behavioral responses of these predators when attacking these prey are needed in order to clearly understand their potential capacity in terms of biological control.

REFERENCES

production. Phil. Trans. R. Soc. B., 363: 761-776

Marta, M., A. Ramon and C. Cristina (2000). Functional Response of Four Heteropteran Predators Preying on Greenhouse Whitefly (Homoptera: Aleurodidae) and Western
Prey-Predator Interaction between *Orius albidipennis* and *Thrips tabaci*

تفاعل الفربيسة والمفترس بين تريس البصل وفربيسة أوريوس الأوريس (Thysanoptera: Thripidae) Thrips tabaci وفبريسيَّة Orius albidipennis (Heteroptera: Anthocoridae) Orius albidipennis

أحمد القناعي ١)، وائل الشيخ ٢) وحامد أبو الفضل ٢)

قسم بحوث الكفاح البيولوجي، معهد بحوث وقاية النبات، مركز البحث الزراعية، الجيزة، مصر
قسم وقاية النبات، كلية الزراعة، جامعة حمص، حمص، سوريا ١٢٥١٢، مصر

يُهاجم التريس أنواعًا مختلفة من النباتات والبراع والأوراق والأزهار لنباتات المحاصيل. يمكن أن تودي الإصابة الشديدة إلى تدهور جودة المنتجات الزراعية التي يمكن أن تصل إلى النصف. هدفت الدراسة إلى تحسين فهم التفاعل بين الفربيسة والمفترس بين حورية Orius albidipennis ومفترس Thrips tabaci من المستعمرة التي تحت تربة في فم الكفاح البيولوجي في الجيزة، مصر، وتجميعها لمدة ٤ ساعات في برمائيات زجاجية تحتوي على فبريسيَّة في أطباق برتقالي صغيرة بثلاث كثافة (١٠٠، ٢٠٠ و٣٠٠) للكثافة، ثم تم تقلل الفبريسيَّة في النمو والحصول على التوازي. تم نقل المفترس إلى النمو باستخدام تغذية شعر ناعمة. تم حساب عدد التريس الحي أو الميت. تم عمل ٥٢ مكرر لكل كثافة.

أظهرت النتائج أن عدد كثافة ١٠٠ و٢٠٠ غالبًا في كل كثافة، زادت الفربيسة المستحيلة بشكل كبير مع زيادة كثافة الفربيسة. عندما تم توفير ١٠ تريس فقط استهلكت O. albidipennis متواضع ٦.٨ ± ٢٢١٠٠ تريس لكل متريس في اليوم، حتى عندما تم توفير ٢٠ تريس زاد الاستهلاك إلى ١٠٠ ± ٢٩٩٩٥ و١٠٠ تريس عند تغذية ٢٠ تريس، مما يشير إلى أن المفترس العثور يكافأ على التريس بكفاءة. وتزويد الفربيسة بثريات حديثة تتراوح من ثريات Thrips tabaci (Th) أظهرت النتائج أن خصائص معدة الهجوم (Th) من العصر SEE الأول عند تغذية على حوريات T. tabaci على التوازي. أظهرت النتائج أن حساس معدة الهجوم (Th) من-court. ارتبطت هذه الفهم بالعوامل التي طرأت على الفربيسة والحيوانات المفترسة خلال مرحلتها النموية.

الكلمات المفتاحية: الكفاح البيولوجي، تريس البصل، الاقتراض، إدارة الأفات.