Assessment of Economic Threshold and Economic Injury Levels of *Thrips tabaci* on Onion Plants

Ahmed H. A. Atia¹; Nasser S. Mandour*¹; Mahmoud F. Mahmoud¹; Mohamed M. A. Ibrahim²

¹Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt

²Department of Piercing–Sucking insects, Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt

Received: 14/11/2021

Abstract: These experiments were conducted in onion fields during 2016/2017 and 2017/2018 seasons for determining the economic damage threshold and economic injury levels of *T. tabaci* using marking plants technique as well as pesticide application technique. In regard to the results of marking plants, the values of economic damage threshold were ranged between 3-4 individuals/plant, during the 1st season and 3-5 during the 2nd season. The relatively low values were noticed during the vegetative and bulbs growth stages of onion plants. So, the Economic Injury Level (EIL) of *T. tabaci* on onion plants can be determined as the number of thrips follows the value of ET levels for the detected peaks ranged between 4-5 individuals/leaf during the two study seasons. As the results of pesticide application technique, the thrips mean numbers and mean yield of onion plants were correlated significantly during the two study seasons. Although, the mean yield of onion plants differed significantly according to the variation of thrips mean numbers resulted in relatively high effect (R2 = 67.367 and 67.094) for the two respective seasons. Results of chi-square analysis (rx2) indicated that the values of economic damage threshold of *T. tabaci* infested onion plants ranged between 6 - 8 thrips/plant, while the economic injury level ranged between 8-13 thrips/plant during the two respective seasons.

Keywords: Thrips tabaci, population dynamic, economic threshold, economic injury.

INTRODUCTION

Onion (Allium cepa L.) is the most important commercial bulb crop grown all over the world and consumed in various forms. It is generally used fresh, spices, as important elements of the Mediterranean diet and as medicines (Mishra et al., 2014). In Egypt, onions plants infested by many pests, the most important of which is onion thrips, Thrips tabaci Lindeman, (Thysanoptera: Thripidae). It has widely distribution, heavily attacking various bulb vegetable crops. The onion thrips T. tabaci feeds directly on leaves, causing silver blotches and premature senescence as well as distorted and undersized bulbs that reduced yield by 30-50% (Diaz et al., 2011; Shiberu and Mahammed, 2014; Nault *et al.*, 2012) and is considered as a limiting factor for the bulb yield as well as reducing its quality (Jenser and Szenasi, 2004; Eltez and Karasavuran, 2006; Mahmoud, 2008).

The action threshold is one of the most important decision making element in integrated pest management (Nault and Shelton, 2010). So, many authors tend to determine damage threshold level and concluded that the levels were varied as host plant and host growth stage (Bird *et al.*, 2004). The application of insecticides at economic threshold not only reduces the thrips infestation but also increases the bulb yield and quality of onion (Tripathy *et al.*, 2014). So, this study aimed to assessment of economic threshold and injury levels of onion thrips on onion plants.

MATERIALS AND METHODS

1. Marking plants technique:

Samples of 50 plants were randomly chosen just after onion seedling transplantation. These plant samples were labeled and left to natural infestation. The experimental areas were received recommended agricultural practices during the course of this study and no chemical control measurements were applied

*Corresponding author e-mail:ns_mandour@hotmail.com

throughout growing seasons. Weekly actual investigated numbers of T. *tabaci* individuals on marked plants were recorded. The yield of each plant was assessed (g/plant) at the end of the growing seasons.

The obtained data was subjected to certain scheme of statistical analysis (Hosny*et al.*, 1972; Salem and Zaki, 1985; Ibrahim, 1994, 2001). The partial regression formula "C-multipliers" which has three independent variants (X1, X2 and X3) were used, where the average number of thrips/plant in the three peaks of population activity were (X1, X2 and X3) and the dependent variable (Y) represented the mean yield/plant. The partial regression was used to show the variability in the yield that could be influenced by thrips infestation during the three peaks through the whole seasons.

Standard error, "t" values, simple correlation (r) and simple regression (b) were calculated. The slop (b) of the straight regression line was performed to obtain the corrected values for the yield.

A regression line curve obtained by transforming the (Y) values into logarithmic values by using the following equation:

$y = e^{-(a+bx)}$ (i.e. $\log y = a \pm bx$).

2. Economic threshold level using insecticide application method:

The economic damage threshold and economic injury levels for onion thrips was estimated on onion (red variety). Experiments using Mospilan 20% sp (Acetamipride) were carried out during the two study seasons of 2016/2017 and 2017/2018. Experimental area of 30/100 Fedden planted by onion was divided equally into 30 experimental units (each 1/100 fed.). The treatment was replicated five times and arranged in completely randomized block design (CRBD).

The insecticidal application treatments:

The first treatment (control) was sprayed by water only at the all times of spraying schedule, the second treatment was sprayed one time, the third treatment was sprayed two times, the fourth treatment was sprayed three times, the fifth treatment was sprayed four times at one week interval by Acetamipride (Mospilan 20% sp) insecticide at concentration of 25 g/100 litter water. The sixth treatment was spraved five times with the same compound and interval periods, for keeping onion thrips at the lowest infestation level on onion and garlic plants.

Sample of 5 plants/replicate of each treatment were investigated actually in the field (using hand lens 10X) and the number of thrips individuals recorded weekly during the period extended from 19 March to 23 April during the 1st season (2016/2017) and from 19 February to 26 March during the 2nd season (2017/2018) on onion, whereas on garlic date were recorded from 1 January to 5 February during the 1st season and 22 January to 26 February during the 2nd season.

The simple correlation and regression coefficients were computed to clear the significance of relationship between the mean number of onion thrips and the obtained mean yield. The chi-square analysis "ry2" was computed; to detect the point at which the onion or garlic yield at the upper part of the slope starts to show a significant reduction in plants yield could be taken as economic threshold level (Ibrahim, 1994, 2001; Ibrahim et al., 2017).

RESULTS AND DISCUSSION

The economic damage threshold is the level of pest population at which integrated control measures must be taken to prevent the pest population from reaching the level that cause economic damage to the crop. *i.e.* the economic injury level (Stone et al., 1959)

1. Determination of economic damage threshold level using marking plants technique:

The weekly counts of T. tabaci on 50 marked red onion variety plants are shown in Tables (1 and 2). The obtained results indicated that the thrips population was fluctuated on onion plants showing three annual peaks, observed at mid-March, end-April and the end-May during the 1st season of 2016/2017. During the 2nd season of 2017/2018, three distinct peaks were also recorded at early-January, end-February and early-April.

The results of statistical analysis (Table 3) showed negative highly significant correlation between the yield of the 50 marked onion plants and thrips mean numbers at tested peaks throughout the two study seasons, with correlation coefficient values of r = -0.950, - 0.924 and - 0.945 for the 1st season; - 0.942, -0.953 and - 0.935 for the 2nd season for the three peaks, respectively. Also, the results of multiple correlation indicated that the infestation through the three peaks of activity were responsible for combined effect, as explained variance percentage (EV%) of 92.476 and 93.703% on onion plants yield variation in 2016/2017 and 2017/2018 seasons, respectively.

During 2016/2017 season, the effect of the three peaks of T. tabaci was caused remarkable change of onion plant yield from one peak to another. The results of partial regression, which explain the effect of each peak with present of other peaks; revealed that, the explained variance percentage (EV%) for these three peaks were 45.53, 22.26 and 39.83% computed for peaks of mid-March (1st peak X1), the 2nd peak at the end of April and in the 3rd peak at the end of May, respectively. The values of regression coefficient (slop "b") for the three peaks with onion plants yield were -0.992**, -0.944*** and -1.137** for the three investigated peaks respectively (Table 3).

So, the results of partial regression (Table 3) of the second season of 2017/2018, further indicated that the three peaks of thrips infestation at the early of January (1st peak X1), at the end of February (2nd peak X2) and at early of April (3rd peak X3) had great influence on onion plants yield by E.V% = 34.89, 46.69and 27.59% for the three peaks, respectively. Also, the values of slop "b" were -1.121***, -0.990***and -1.023*** for the three peaks, respectively. The chi square (r χ^2) analysis was computed to

determine of the point at which the increase in insect number through each of infestation peaks (X1 & X2 & X3) cause significant reduction in the onion yield weight and the obtained results revealed that the three infestation peaks were varied as its effect on yield led to variation in the economic damage threshold values.

During 2016/2017 season, the thrips population during the 1st peak of infestation at mid-March increased from 5 to 9,13,17,20 individuals/plant causing onion yield insignificant decrease in 241-220 g/plant, while the increase of thrips mean from 5 to 25 individuals/plant and more, resulted insignificant reduction in the onion plant yield from (241 to 215 g/plant), (χ^2 value = 21.071; P < 0.01). Thus the increase in thrips numbers to an average of 25 individuals/plant, i.e. 4.16≈ 4 individual/leaf (depending on mean of leaves number/plant = 6 leaves) could be regarded as the economic threshold (ET) for the 1st peak during the beginning of bulbs growth period.

In the same trend, the results of the 2nd peak gave same ET value where the increasing in number of insects from 7 to 10, 14, 18 and 20 individuals/plant decreased the yield of onion plants insignificantly from 241 to 200 g/plant. Meanwhile the increase of thrips number to 25 individuals/plant onwards (χ^{2} 16.03**) caused significant decrease in the yield from

241 to 215 g/plant. Thus, the increase of thrips numbers to an average of 25 individuals/plant *i.e.* $4.16 \approx 4$ individual/leaf (depending on mean of leaves number/plant = 6 leaves) could be considered as the economic threshold for the 2^{nd} peak during the same growth period. In case of the 3^{rd} peak, the increasing of the thrips number from 3 to 7 and 14 individuals/plant decreased onion yield insignificantly from 241-235 g/plant, while the increase of thrips numbers to 17

individuals/plant ($\chi^2 = 13.12^{**}$) caused significant yield reduction from 241 to 229 g/plant. So, the raise of thrips numbers to an average of 17 individuals/plant *i.e.* 2.83 \approx 3 individuals/leaf (depending on mean of

leaves/plant = 6 leaves) could be considered as the economic damage threshold for the 3^{rd} peak during the period of bulbs ripping.

Table (1): Yield-infestation relationship in 50 marked onion plants under natural infestation of *T. tabaci* during growing season of 2016/2017

Plant		erved yi	eld & th	rips		First	neak	Ś	Second	neak	oeak Their peak		
no.	V	<u>No./r</u>		V2	V1					-	V2		
1	Y 160	X1 110	X2 83	X3 78	X1 5	Y 241	y 246.803	X2 7	Y 241	<u>У</u> 236.990	X3	Y 241	<u>у</u> 241.738
1 2	205	45	83 7	35	5 9	241	240.803	10	241	236.990 234.157	3 7	241	241.738 237.189
2 3	203 145	43 117	88	80	13	237	242.832 238.861	10	237	234.137	/ 14	237	229.229
3 4	207	55	10	37	17	233	234.889	14	235	226.602	14	233	225.817
5	153	115	90	88	20	229	231.911	20	229	220.002	20	229	222.405
6	189	60	50	43	25	215	226.947	25	215	219.991	23	215	218.994
7	177	66	45	50	27	210	224.961	29	210	216.213	25	210	216.720
8	110	140	140	128	33	207	219.004	33	207	212.435	30	207	211.034
9	175	64	55	45	38	205	214.040	35	205	210.546	35	205	205.348
10	82	170	157	140	45	203	207.090	40	203	205.824	37	203	203.073
11	105	143	130	125	55	200	197.162	42	200	203.935	40	200	199.662
12	125	128	94	137	60	198	192.198	45	198	201.102	43	198	196.250
13	210	38	14	40	64	196	188.227	50	196	196.380	45	196	193.976
14	99	152	159	145	66	195	186.241	55	195	191.658	50	195	188.290
15	100	150	155	120	73	189	179.291	62	189	185.047	53	189	184.879
16	102	146	120	117	77	184	175.320	66	184	181.269	55	184	182.604
17	50	178	168	145	80	182	172.341	72	182	175.602	57	182	180.330
18	85	163	160	142	81	177	171.349	74	177	173.714	60	177	176.918
19	120	130	150	85	85	176	167.377	78	176	169.936	62	176	174.644
20	168	100	97	55	90	175	162.413	80	175	168.047	64	175	172.370
21	196	73	62	53	92	170	160.427	83	170	165.214	65	170	171.232
22	119	137	145	112	97	168	155.463	88	168	160.492	70	168	165.547
23	184	77	66	57	100	165	152.485	90	165	158.603	74	165	160.998
24	229	33	18	3	102	164	150.499	94	164	154.825	78	164	156.449
25	164	105	100	87	105	163	147.521	97	163	151.992	80	163	154.175
26	203	27	20	7	105	162	147.521	100	162	149.158	85	162	148.489
27	200	25	25	14	110	160	142.557	102	160	147.270	87	160	146.214
28	107 60	144 172	142 165	105 150	111 112	153 151	141.564	110 113	153 151	139.714	88 90	153 151	145.077
29 30	165	112	103	130 90	112	131	140.571 137.592	115	131	136.881 132.159	90 93	131	142.803 139.391
30 31	103	152	102	90 93	117	143	137.392	120	143	132.139	93 96	143	139.391
31	133	132	139	118	128	145	124.686	120	145	128.381	90 99	145	132.568
33	151	102	113	96	128	125	124.000	122	125	125.548	100	125	131.431
33 34	65	163	169	137	130	120	122.700	130	120	120.826	100	120	128.020
35	163	105	118	99	135	119	117.736	130	119	120.826	105	119	125.745
36	170	90	122	60	137	117	115.750	136	117	115.159	112	117	117.785
37	70	154	170	129	140	112	112.772	139	112	112.326	117	112	112.099
38	195	80	72	62	143	110	109.793	140	110	111.381	118	110	110.962
39	235	5	29	17	144	107	108.800	142	107	109.492	120	107	108.688
40	241	9	33	20	146	105	106.815	145	105	106.659	125	105	103.002
41	182	111	74	64	148	102	104.829	150	102	101.937	128	102	99.590
42	198	85	78	70	150	100	102.843	153	100	99.104	129	100	98.453
43	237	13	35	23	152	99	100.858	155	99	97.215	137	99	89.356
44	176	81	80	65	152	85	100.858	157	85	95.326	137	85	89.356
45	117	129	136	100	154	82	98.872	159	82	93.437	140	82	85.944
46	220	17	40	25	163	80	89.937	160	80	92.493	142	80	83.670
47	143	97	130	103	163	70	89.937	165	70	87.770	144	70	81.395
48	162	92	125	74	170	65	82.987	168	65	84.937	145	65	80.258
49	215	20	42	30	172	60	81.001	169	60	83.993	145	60	80.258
50	80	148	153	144	178	50	75.044	170	50	83.048	150	50	74.572

 $X1 = Thrips No. at 1^{st} peak$ $X2 = Thrips No. at 2^{nd} peak$ $X3 = Thrips No. at 3^{rd} peak$ Y = yield

 γ = Calculated values of yield (according to regression line equation)

Table (2): Yield-infestation relationship in 50 marked onion plants under natural infestation of *T. tabaci* during growing season of 2017/2018

Plant no.		served y No./	ield & t /plant	hrips		First p	oeak		Second	peak		Third	peak
-	Y	X1	X2	X3	X1	Y	У	X2	Y	У	X3	Y	У
1	197	37	42	70	4	225	230.863	7	225	231.230	5	225	234.934
2	95	122	133	153	8	223	226.377	10	223	228.259	9	223	230.842
3	90	125	155	149	10	219	224.134	14	219	224.296	13	219	226.749
4	195	40	45	65	13	215	220.770	18	215	220.334	15	215	224.702
5	129	82	112	120	15	211	218.528	20	211	218.353	20	211	219.586
6	225	4	10	5	18	210	215.163	22	210	216.372	23	210	216.517
7	100	115	119	123	20	208	212.921	27	208	211.419	28	208	211.401
8	85	120	158	153	25	207	207.314	30	207	208.447	32	207	207.308
9	194	42	48	63	29	205	202.828	35	205	203.494	36	205	203.215
10	169	80	71	117	30	202	201.707	37	202	201.513	38	202	201.169
11	105	107	162	130	35	200	196.100	40	200	198.542	40	200	199.123
12	117	118	122	117	37	197	193.857	42	197	196.560	45	197	194.007
13	164	87	75	75	40	195	190.493	45	195	193.589	47	195	191.960
14	80	134	132	154	42	194	188.25	48	194	190.617	50	194	188.891
15	193	45	52	60	45	193	184.886	52	193	186.655	54	193	184.798
16	110	130	126	116	47	190	182.643	55	190	183.683	56	190	182.752
17	157	78	77	110	50	188	179.279	60	188	178.730	60	188	178.659
18	223	8	7	9	52	186	177.036	63	186	175.759	63	186	175.589
19	152	90	80	105	55	183	173.672	65	183	173.777	65	183	173.543
20	190	60	55	56	58	180	170.308	68	180	170.806	70	180	168.427
21	70	145	160	150	60	170	168.065	71	170	167.834	75	170	163.311
22	188	47	60	54	65	169	162.458	75	169	163.872	79	169	159.218
23	120	94	130	104	67	164	160.216	77	164	161.891	83	164	155.125
24	219	10	14	13	70	160	156.851	80	160	158.919	87	160	151.032
25	75	135	125	127	75	157	151.244	85	157	153.966	90	157	147.963
26	65	75	156	145	78	152	147.880	88	152	150.994	94	152	143.870
27	143	97	88	132	80	150	145.638	93	150	146.042	98	150	139.777
28	211	13	18	40	82	148	143.395	96	148	143.070	100	148	137.731
29	68	138	140	144	87	143	137.788	100	143	139.108	104	143	133.638
30	55	140	155	142	90	140	134.424	105	140	134.155	105	140	132.615
31	186	50	63	50	94	137	129.938	112	137	127.221	110	137	127.499
32	215	15	20	38	97 100	130	126.574	119	130	120.287	116	130	121.360
33	130	100	135	100	100	129	123.210	122	129	117.315	117	129	120.337
34	148	70 52	85 (5	98 47	104	124	118.724	125	124	114.343	117	124	120.337
35	183	52 18	65 22	47 36	107 107	120	115.360 115.360	126 130	120 117	113.353 109.391	120 123	120	117.267
36 37	210 137	104	142	50 94	107	117 112	113.300	130	117	109.391	125	117 112	114.198 110.105
37	208	20	27	32	115	112	106.389	132	112	107.409	127	112	107.035
38 39	180	20 55	68	45	115	105	106.389	135	105	100.419	130	105	107.033
39 40	207	25	30	28	113	103	103.025	133	105	99.485	132	105	104.989
40 41	124	107	140	135	120	95	103.023	140	95	99.485 99.485	135	95	99.873
41	170	58	93	79	120	93 90	98.539	140	93 90	99.483 97.504	140	93 90	96.803
42 43	205	29	35	23	122	90 85	98.339 95.175	142	85	97.504 92.551	140	85	90.803 94.757
43 44	203 72	142	150	140	123	80	89.568	147	83 80	89.579	142	80	94.737 92.710
44	160	65	96	83	130	75	85.083	155	75	89.579	144	75	92.710 91.687
43 46	202	30	37	20	134	73 72	83.961	155	73	84.626 84.626	145	73 72	87.594
40 47	112	115	147	137	133	70	80.597	155	70	83.636	150	70	86.571
47	140	110	105	90	140	68	78.355	158	68	81.655	150	68	83.502
48 49	150	67	100	87	140	65	76.112	160	65	79.674	153	65	83.502 83.502
50	200	35	40	15	145	55	72.748	162	55	77.692	155	55	82.478
30	200	55	40	10	143		12.140	102	55	11.072	1.54	55	04.7/0

X1 = Thrips No. at 1st peak X2 = Thrips No. at 2nd peak X3 = Thrips No. at 3rd peak Y = yield

 γ = Calculated values of yield (according to regression line equation)

Table (3): Statistical analysis (parti	al regression, simple correlation an	d regression) for the relationship between the
peaks of T. tabaci mean r	numbers and the onion yield of 50 m	narked plants during the two studied seasons of
2016/2017 and 2017/2018	3	

Season	X 7 ! -1	Peaks of <i>T. tabaci</i> population				
	Variab	les	x1	x2	x3	
(7)		E.V %	45.53	22.26	39.83	
	D (1) 1	S.E	0.139	0.111	0.161	
	Partial regression	t	-3.259	-2.004	-2.467	
6/20		Р	**	ns	*	
010		r	-0.950	-0.924	-0.945	
n (2	Simple correlation	Р	***	***	***	
First season (2016/2017)		b	-0.992	-0.944	-1.137	
	Simple regression	р	***	***	**	
		E.V %		92.476		
	Combined effect	F		201.750		
		Р		***		
		E.V %	34.89	46.69	27.59	
	Partial regression	S.E	0.129	0.111	0.112	
		t	-2.697	-4.195	-2.459	
8)		Р	**	***	*	
201		r	-0.942	-0.953	-0.935	
17/	Simple correlation	Р	***	***	***	
Second season (2017/2018)	~	b	-1.121	-0.990	-1.023	
	Simple regression	р	***	***	***	
		E.V %		93.703		
puo	Combined effect	F		244.070		
eec		Р		***		

X1 = Thrips No. at 1st peak X2 = Thrips No. at 2nd peak X3 = Thrips No. at 3rd peak

* indicates only significant differences

** indicates high significant differences

*** indicates highly significant differences

ns indicates insignificant differences

Regarding to the second season of 2017/2018, the three peaks of *T. tabaci* was recorded at the early of January (1st peak X1), end of February (2nd peak X2) and early of April (3rd peak X3). The mean of thrips number during the 1st peak of infestation increased on inspected plants from 4 to 8,10,13,15 and 18 individuals/plant decreased onion yield of these plants insignificantly from 225-210 g/plant, while the increase of thrips numbers to 20 individuals/plant onwards, revealed highly significant reduction(χ^2 **) in the

yield from 225 to 208 g/plant. So, the development of thrips numbers to an average of 20 individuals/plant, *i.e.* $3.33 \approx 3$ individuals/leaf (depending on mean of leaves number/plant = 6 leaves) could be recognized as the economic damage threshold for the 1st peak during the vegetative growth of onion plants.

For the second peak (2nd season) at the end of February of 2017/2018 season, the increasing of thrips number on investigated plants from 7 to 10,14,18,20 and 22individuals/plant decreased onion yield of these plants insignificantly from 225-210 g/plant, while the increase of thrips numbers to 27 individuals/plant

caused significant reduction ($\chi^2 = 20.557^{**}$) in the onion plant yield from 225 to 208 g/plant (Table 4). So, the increase of thrips numbers to an average of 27 individuals/plant, *i.e.* 4.5 \approx 5 individuals/leaf (depending on mean of leaves number/plant = 6 leaves) could be recorded as the economic damage threshold for the period of onion bulbs growth starting.

In case of the third peak (2nd season) at early of April, the growth of thrips number on inspected plants from 5 to 9,13,15 and 20 individuals/plant influenced onion yield insignificantly from 225-211 g/plant, while the increase of thrips numbers to 23 individual/plant ($\chi^2 = 18.197$ **) caused significant decrease in the yield from 225 to 210 g/plant (Table 4). Therefore, the increase of thrips numbers to an average of 23 individuals/plant, *i.e.* 3.83 \approx 4 individuals/leaf (depending on mean of leaves number/plant = 6 leaves) could be recorded as the economic damage threshold

for the period of onion plants bulbs ripening. The obtained results indicated that the values of economic damage threshold of *thrips tabaci* infested onion plants ranged between 3 to 4 individuals/plant, during the 1^{st} season and 3-5 during the 2^{nd} season where the values were differed based on plants growth periods and seasons. So, the economic injury level (EIL) of *T. tabaci* on onion plants can be determined as the number of thrips follows the value of ET levels for the detected peaks ranged between 4-5 individuals/leaf during the two study seasons. That mean, the control measurements must be taken at the levels of ET determined for onion growth stages.

These results are in harmony with these of Bird et *al.* (2004) who concluded that the economic threshold level of *T. tabaci* was ranged from 4–10 and 10–15 thrips/plant is recommended for onion plant stages of 2–6 leaves and 6 leaves to maturity, respectively. Also, Mishra et *al.* (2014) found that the threshold of *T. tabaci* was 3 thrips/green leaves. On contrast, these results disagreed with those of Rueda et *al.* (2006) who noted that the action threshold of *T. tabaci* ranged between 0.5-1.6 thrips/leaf.%) of 92.476 and 93.703% on onion plants yield variation in 2016/2017 and 2017/2018 seasons, respectively.

During 2016/2017 season, the effect of the three peaks of *T. tabaci* was caused remarkable change of onion plant yield from one peak to another. The results of partial regression, which explain the effect of each peak with present of other peaks; revealed that, the explained variance percentage (EV%) for these three peaks were 45.53, 22.26 and 39.83% computed for peaks of mid-March (1st peak x1), the 2nd peak at the end of April and in the 3rd peak at the end of May, respectively. The values of regression coefficient (slop "b") for the three peaks with onion plants yield were o - 0.992**, -0.944*** and -1.137** for the three investigated peaks respectively (Table 3).

So, the results of partial regression (Table 3) of the second season of 2017/2018, further indicated that the three peaks of thrips infestation at the early of January (1st peak x1), at the end of February (2nd peak x2) and at early of April (3rd peak x3) had great influence on onion plants yield by E.V% = 34.89, 46.69 and 27.59% for the three peaks, respectively. Also, the values of slop "b" were -1.121***, -0.990***and -1.023***for the three peaks, respectively.

The chi square (r χ^2) analysis was computed to

determine of the point at which the increase in insect number through each of infestation peaks (X1 &X2 &X3) cause significant reduction in the onion yield weight and the obtained results revealed that the three infestation peaks were varied as its effect on yield led to variation in the economic damage threshold values.

During 2016/2017 season, the thrips population during the 1st peak of infestation at mid-March increased from 5 to 9,13,17,20 individuals/plant causing onion yield insignificant decrease in 241-220 g/plant, while the increase of thrips mean from 5 to 25 individuals/plant and more, resulted insignificant reduction in the onion plant yield from (241 to 215 g/plant), (χ^2 value =21.071; P < 0.01). Thus the increase in thrips numbers to an average of 25 individuals/plant, *i.e.* 4.16 \approx 4

individual/leaf (depending on mean of leaves number/plant = 6 leaves) could be regarded as the economic threshold (ET) for the 1^{st} peak during the beginning of bulbs growth period.

In the same trend, the results of the 2nd peak gave same ET value where the increasing in number of insects from 7 to 10, 14, 18 and 20 individuals/plant decreased the yield of onion plants insignificantly from 241 to 200 g/plant. Meanwhile the increase of thrips number to 25 individuals/plant onwards ($\chi^2 = 16.03^{**}$) caused significant decrease in the yield from 241 to 215 g/plant (Table 4). Thus, the increase of thrips numbers to an average of 25 individuals/plant *i.e.* $4.16 \approx 4$ individual/leaf (depending on mean of leaves number/plant = 6 leaves) could be considered as the economic threshold for the 2^{nd} peak during the same growth period. In case of the 3^{rd} peak, the increasing of the thrips number from 3 to 7 and 14 individuals/plant decreased onion yield insignificantly from 241-235 g/plant, while the increase of thrips numbers to 17 individuals/plant ($\chi^2 = 13.12^{**}$) caused significant

yield reduction from 241 to 229 g/plant (Table 4). So, the raise of thrips numbers to an average of 17 individuals/plant *i.e.* 2.83 \approx 3 individuals/leaf (depending on mean of leaves/plant = 6 leaves) could be considered as the economic damage threshold for the 3rd peak during the period of bulbs ripping.

Regarding to the second season of 2017/2018, the three peaks of *T. tabaci* was recorded at the early of January (1st peak X1), end of February (2nd peak X2) and early of April (3rd peak X3). The mean of thrips number during the 1st peak of infestation increased on inspected plants from 4 to 8,10,13,15 and 18 individuals/plant decreased onion yield of these plants insignificantly from 225-210 g/plant, while the increase of thrips numbers to 20 individuals/plant onwards, revealed highly significant reduction(χ^2 **) in the

yield from 225 to 208 g/plant. So, the development of thrips numbers to an average of 20 individuals/plant, *i.e.* $3.33 \approx 3$ individuals/leaf (depending on mean of leaves number/plant = 6 leaves) could be recognized as the economic damage threshold for the 1st peak during the vegetative growth of onion plants.

For the second peak (2nd season) at the end of February of 2017/2018 season, the increasing of thrips number on investigated plants from 7 to 10,14,18,20 and 22individuals/plant decreased onion yield of these plants insignificantly from 225-210 g/plant, while the increase of thrips numbers to 27 individuals/plant caused significant reduction ($\chi^2 = 20.557^{**}$) in the onion plant yield from 225 to 208 g/plant (Table 4). So, the increase of thrips numbers to an average of 27 individuals/plant, *i.e.* 4.5 \approx 5 individuals/leaf (depending on mean of leaves number/plant = 6 leaves) could be recorded as the economic damage threshold for the period of onion bulbs growth starting.

In case of the third peak (2nd season) at early of April, the growth of thrips number on inspected plants from 5 to 9,13,15 and 20 individuals/plant influenced

onion yield insignificantly from 225-211 g/plant, while the increase of thrips numbers to 23 individual/plant ($\chi^2 = 18.197$ **) caused significant decrease in the yield from 225 to 210 g/plant (Table 4). Therefore, the increase of thrips numbers to an average of 23 individuals/plant, *i.e.* 3.83 \approx 4 individuals/leaf (depending on mean of leaves number/plant = 6 leaves) could be recorded as the economic damage threshold for the period of onion plants bulbs ripening.

The obtained results indicated that the values of economic damage threshold of *thrips tabaci* infested onion plants ranged between 3 to 4 individuals/plant, during the 1^{st} season and 3-5 during the 2^{nd} season where the values were differed based on plants growth periods and seasons. So, the economic injury level (EIL) of *T. tabaci* on onion plants can be determined as

the number of thrips follows the value of ET levels for the detected peaks ranged between 4-5 individuals/leaf during the two study seasons. That mean, the control measurements must be taken at the levels of ET determined for onion growth stages.

These results are in harmony with these of Bird et *al.* (2004) who concluded that the economic threshold level of *T. tabaci* was ranged from 4–10 and 10–15 thrips/plant is recommended for onion plant stages of 2–6 leaves and 6 leaves to maturity, respectively. Also, Mishra et *al.* (2014) found that the threshold of *T. tabaci* was 3 thrips/green leaves. On contrast, these results disagreed with those of Rueda et *al.* (2006) who noted that the action threshold of *T. tabaci* ranged between 0.5-1.6 thrips/leaf.

Table (4): Comparison of calculated χ^2 with the χ^2 tabulated values of thrips mean at apparent peaks of *T. tabaci* during the two study seasons of 2016/2017 and 2017/2018

	Marking plants	$\chi^{^2}$ calculated	tabulated χ^2 al (0.01)
		1.231	6.635
		3.902	9.210
<u>(</u>	1 st peak	8.163	11.345
First season (2016/2017)	-	12.929	13.277
16/		21.071	15.086
20]		0.577	6.635
u (2.793	9.210
ISO	2 nd peak	5.954	11.345
sea	-	9.815	13.277
st		16.03	15.086
Fi		0.168	6.635
	3 rd peak	8.378	9.210
		13.12	11.345
		1.429	6.635
		2.853	9.210
	1 st	5.125	11.345
	1 st peak	8.222	13.277
018		13.091	15.086
//20		17.2	16.812
017		0.577	6.635
(5)		2.793	9.210
uo	and man la	5.954	11.345
eas	2 nd peak	9.815	13.277
l se		13.163	15.086
onc		20.557	16.812
Second season (2017/2018)		1.231	6.635
\mathbf{v}		3.902	9.210
	3 rd peak	6.277	11.345
	•	12.037	13.277
		18.197	15.086

2. Determination of economic damage threshold level using insecticidal application:

These experiments were carried out during the two study seasons of 2016/2017 and 2017/2018 at al Qassassine region. The common insecticide, Mospilan 20% SP was spayed five sprays as schedule of this trial. The different levels of infestations in various sprayed

treatments along with the corresponding average weight of onion and garlic yield in each treatment plot and the statistical analysis are illustrated in Table (5). The damage threshold of onion thrips, *Thrips tabaci* infestation on yield of onion and garlic plants was calculated as proposed by Ibrahim (1994). The obtained results of mean numbers of thrips and mean yield of onion plants are found to be correlated significantly (r = -0.859 and -0.858) during the two study seasons. Although, the mean yield of onion plants differed significantly according to the variation of thrips mean numbers resulted in relatively high effect, $R^2 = 67.367$ and 67.094; regression coefficient (slop) b = - 0.157* and - 0.234* for the two respective seasons (Table 6).

Season	No. of spray	No. of thrips	Yield in k.g	Calculated yield in k.g	Calculated χ^2 values	d.f	χ ² tabulated 0.01
	5	141	243	195.879			
F	4	208	211	185.359	17.265	1	6.635
201	3	224	134	182.847			
2016/2017	2	564	89.3	129.464			
20	1	871	72.3	81.262			
	0	1167	60	34.787			
	5	155	270.3	225.564			
×	4	158	261.7	224.859	0.051	1	6.635
201	3	195	184	216.172	8.607	2	9.210
121	2	331	135	184.239	89.36	3	11.345
2017/2018	1	552	103.3	132.349			
	0	895	80.7	51.814			

 Table (5): Damage threshold and injury levels for *T. tabaci* on onion plants under insecticidal treatment application in the two study seasons under field conditions of al Qassassine Region, Ismailia Governorate

Table (6): Statistical analysis (simple correlation and
Partial regression) for the relationship
between *Thrips tabaci* and the yield of
onion under insecticidal treatment
application during 2016/2017 and
2017/2018 seasons

	Crop	Onion					
Varia	ıbles	2016/2017	2017/2018				
	b	-0.157	-0.234				
Partial	S.E	0.0466	0.070				
reg.	t	-3.364	-3.345				
	Р	*	*				
	F	11.322	11.195				
	Р	*	*				
	E.V %	67.367	67.094				
Simple	r	-0.859	-0.858				
cor.	Р	*	*				

* indicates only significant differences.

The mathematic determination as chi-square analysis (rx2) to reach to the point at which the increases of insect number on plants of the sprayed treatments cause a drop in the onion plant yield was calculated. The results in Table (5) indicated that the

damage threshold differed from season to another. During 2016/2017 season and there was a significant reduction in the yield from 243 to 211 kg/ $^{1}/_{100}$ Fed as a result of the increasing infestation from 141 to 208 thrips/sample (χ^{2} ***). This level could be considered

as damage threshold. Thus, the economic damage threshold of *T. tabaci* on onion ranged between 141 to 208 thrips/25plant (sample size). In other words, the economic threshold level for *T. tabaci* infestation on onion was achieved when number of *T. tabaci* reached an average number of $5.64 \approx 6$ thrips/plant where the thrips control must be taken, then the injury level reach to $8.32 \approx 8$ thrips/plant as the follows population number point where the infestation skip the point of economic damage.

During the second season of 2017/2018, increasing the number of thrips insect from 155 to 158 and 195 thrips/plant caused a significant decrease onion yield from 270.3 - 184 kg/ $^{1}/_{100}$ Fed, while the increase of thrips numbers to 331 thrips/plant caused significant reduction (χ^{2} ***) in the onion plant yield from 270.3

to 135 kg/ $^{1}/_{100}$ Fed. So, the damage threshold level for *T. tabaci* infestation on onion was achieved when number of *T. tabaci* reached an average number of 195 thrips/sample (25 plant), that mean the damage threshold level reach to 7.8 \approx 8 thrips/plant; then the injury level reach to 13.24 \approx 13 thrips/plant (Table 5).

The obtained results indicated that the values of economic damage threshold of *T. tabaci* infested onion plants ranged from 6 to 8 thrips/plant, while the economic injury level ranged between 8 to 13 during the two study seasons, respectively.

The obtained results found are in agreement with those of Bird et *al.* (2004) who concluded that the economic threshold level of *T. tabaci* was ranged from 4.00 to 10.00 and 10.00 to 15.00 thrips/plant is recommended for onion plant stages with 2to6 leaves and 6 leaves to maturity, respectively. Also, these results coincided with those of Mishra *et al.* (2014) who mentioned that the threshold of *T. tabaci* was 3 thrips/green leaves. However, the current results disagree with those of Rueda *et al.* (2006) who noted that the action threshold of *T. tabaci* ranged from 0.50 to 1.60 thrips/leaf.

REFERENCES

- Bird, G., B. Bishop, E. Grafius, M. Hausbeck, J. Lynnae, K. William and W. Pett (2004). Insect, diseases and nematode control for commercial vegetables. Michigan State University Extension Bulletin, 312: 81–82.
- Diaz-Montano, J., M. Fuchs, B. A. Nault, J. Fail and A. N. Shelton (2011). Onion Thrips (Thysanoptera: Thripidae): A Global pest of increasing concern. Journal of Economic Entomology, 104(1):1-13.
- Eltez, S. and Y. Karsavuran (2006). Studies on the determination of population fluctuation of *Thrips tabaci* (Lindman)(Thysanoptera: Thripidae) in processing tomato production areas in Izmir Province (Turkey). Ege Üniversitesi Ziraat Fakültesi Dergisi, 43(3):31-42.
- Hosny, M. M, A. H. Amin and G. B. El-saaddny (1972). The damage threshold of the red scale, *Aonidiella aurantii* (Mskell) infesting mandarin trees in Egypt. Z.ang. Ent., 71: 286-296.
- Ibrahim, M. M. A. (1994). Ecological and biological studies on some pests of solanaceous plants at Sharkia Governorat. Msc, thesis, Faculty of Agriculture, Zagazig University, 200pp.
- Ibrahim, M. M. A. (2001). Studies on some piercingsucking insect pests infesting cotton plants. PHD, Thesis, Faculty of Agriculture, Zagazig University, 198pp.
- Ibrahim, M. M. A., M. H. E. Lokma and M. A. Issa (2017). Economic threshold, injury levels and food preference of glassy clover snail, *Monacha cartusiana* (Muller) infesting strawberry plants at Ismailia Governorate, Egypt. Egypt. Acad. Journal of Biological Science, 8(2):11-20.

- Jenser, G. and A. Szénási (2004). Review of the biology and vector capability of *Thrips tabaci* Lindeman (Thysanoptera: Thripidae). Acta Phytopathologica et Entomologica Hungarica., 39(1-3):137–155.
- Mahmoud, H. H. (2008): Ecological studies on certain insect pests of onion with special emphasis on the onion bulb fly *Eumerus anoenus* Loew. Ph.D. Thesis, Faculty of Agriculture, Cairo University, Egypt.
- Mishra, R. K., R. K. Jaiswal, D. Kumar, P. R. Saabale and A. Singh (2014). Management of major diseases and insect pests of onion and garlic: A comprehensive review. Journal of Plant Breeding and crop science, 6(11): 160-170.
- Nault, B. A. and A. M. Shelton (2010). Impact of insecticide efficacy on developing action thresholds for pest management: A case study of onion thrips (Thysanoptera: Thripidae) on onion. Journal of Economic Entomology, 103(4): 1315–1326.
- Nault, B. A., A. M. Shelton, C. L. Hsu and C. A. Hoepting (2012). How to win the battle against onion thrips. Journal of Economic Entomology, 103(4): 1315-1326.
- Rueda, A., F. R. Badenes-Perez and A. M. Shelton (2006). Developing economic thresholds for onion thrips in Honduras. Crop Protection, Elsevier Science Ltd, 26(8):1099-1107.
- Salem, S. A. and F. N. Zaki (1985). Economic threshold level of the citrus wax scale *Ceroplastes floridensis* (Comstock) on citrus Egypt. Bulletin of the Entomological Society of Egypt. 65, 1987-1985. pp. 333-343.
- Shiberu, T. and A. Mahammed (2014). The Importance and Management option of onion thrips, *Thrips tabaci* (L.) (Thysanoptera: Thripidae) in Ethiopia. Advance Research in Agriculture and Veterinary Science, 1(3): 95-102.
- Stone, N. P., A. P. Gutierrez, W. M. Getz and R. Norgard (1959). Pink bollworm control in south western desert cotton. III strategies for control: an economic simulation study. Agricultural Experiment Stations, Hilgardia, (9):42-56.
- Tripathy, P., B. B. Sahoo, S. K. Das, A. Priyadarshini, D. Patel and D. K. Dash (2014): Adoption of IPM approach- an ideal module against thrips (*Thrips tabaci* Linderman) in onion. Advances in Crop Science and Technology, 2(4): 2329-8863.

تقدير الحد الاقتصادي الحرج ومستويات الضرر لتربس البصل علي نباتات البصل

أحمد حمدي عبد الدايم عطية'، ناصر سعيد مندور'، محمود فرج محمود'، محمد محمد أحمد إبراهيم' أقسم وقاية النبات، كليه الزراعة، جامعه قناة السويس، الإسماعيلية، مصر أقسم الحشرات الثاقبة الماصة، معهد بحوث وقاية النبات، مركز البحوث الزراعية، الجيزة، مصر

أجريت الدراسة الحالية خلال موسمي ٢٠١٧/٢٠١٦ و ٢٠١٨/٢٠١٧ في القصاصين، الإسماعيلية، مصر. والتي هدفت إلي إلقاء الضوء علي بعض الممارسات الفعالة التي يمكن توظيفها في برنامج الممكاملة لتربس البصل. يعرف حد الضرر الاقتصادي بمستوى تعداد الآفة الذي يجب عنده اتخاذ تدابير المكافحة. وتم تحديد حد الضرر الاقتصادي الحرج ومستويات الضرر باستخدام طريقتين، هما النباتات المعلمة واستخدام المبيدات الحشرية. اتخاذ تدابير المكافحة. وتم تحديد حد الضرر الاقتصادي الحرج ومستويات الضرر باستخدام طريقتين، هما النباتات المعلمة واستخدام المبيدات الحشرية. اوضح التحليل الإحصائي للنتائج لتجربة النباتات المعلمة وحود علاقة سلببة معنوية بين محصول نباتات البصل المعلمة ومتوسط تعداد التربس للذروات أوضح التحليل الإحصائي للنتائج لتجربة النباتات المعلمة وجود علاقة سلببة معنوية بين محصول نباتات البصل المعلمة ومتوسط تعداد التربس للذروات المسجلة. كما أشارت نتائج الارتباط المتعدد أن الإصابة خلال الثلاث ذروات معاً كانت مسئولة عن التأثير المشترك ٢٧٦. ٢٩٧ - ٢٠٧٣ على نباتات المسجلة. كما أشارت نتائج الارتباط المتعدد أن الإصابة خلال الثلاث ذروات معاً كانت مسئولة عن التأثير المشترك ٢٧٦ على نباتات البصل عنه اليوات الحمو علي البصل خلال موسمي الدراسة على التوالي. يمكن تحديد حد الضرر الاقتصادي (EIL) التربس على نباتات البصل عن طريق تقدير تعداد التربس تبعاً لقيم الحدود الحرجة للذروات حيث تراوحت بين ٤ إلى ٥ فرد/ ورقة خلال موسمي الدراسة على الرغم من أن متوسط إنتاج نبات البصل كان متبايناً بشكل بين متوسط أعداد التربس وما محصول نبات البصل المعاملة خلال موسمي الدراسة على الرغم من أن متوسط إنتاج نبات البصل كان متبايناً بشكل كبير وفقاً لاختلاف أعداد التربس مما أعطى تأثيراً مشتركاً للذروات الثلاث بارتفاع قدره ٢٠٦٧ و ٢٠٩٠ ٢٥% للميدات المرية وجود البعالي التوليلي بعنوي في الموسمي على الزي وقولي المالي المربي على مان موسول إلى المعامي وحود التربي أستركان تديم بالتابي معنوي في مون في الرغم من أن متوسل إنتا البصل كان متبايناً بشكل عروف في عربو في فاضر وفقاً لاختلاف أعداد التربس معاري أستركان للذروات الثلاث بارتفاع قدره ٢٦٠٦٧ و ٢٠٩٠ 10% للمين على التوالي . مربع كاي (٢٢٢) لوصول إلى النقطة التي تسبب عندها زيادة تعداد الحشرات على يبنات البصل المصابة قد ترود ما بلي مرشمان مربو على مانو ماي مو

الكلمات الدالة: Thrips tabaci ، التعداد، مستوي الضرر الاقتصادي، الحد الاقتصادي الحرج