Cytopathological effects of banana bunchy top virus (BBTV) and production of infected free banana plants using in vitro culture technique

Hamed, N. A., Gamal Edeen, A. S. and Sallam, A. A.

1Plant pathology research institute, virus and phytoplasma Dep., Giza, Egypt. 2 Suez Canal University, Faculty of Agriculture, Agricultural Botany Dep. Ismailia Egypt.

Received: 3/12/2023

Abstract: Banana Bunchy top virus (BBTV) is the most important banana disease worldwide. This study focused on the production of BBTV-free seedlings from infected banana plants. Suckers from the Egyptian plantain Behaira gov., (cv. Grandinane) with distinguished BBTV symptoms were collected. Decrease in the number of xylem vessels, severe necrosis of xylem and phloem vessel cells, with blockage of these vessels and the presence of dark-colored foreign materials. Several anatomical changes were observed reflecting the external symptoms on infected plants. Examination of ultrathin sections by Transmission Electron Microscopy revealed changes in the chloroplast, cytoplasm and in nucleus. Cross section of BBTV by microtome technique revealed that Xylem and Phloem cells appear necrotized and blocked with dark stained material. Meristematic apices excised from those suckers were cultured in vitro and sub-cultured five times. The presence of BBTV was evaluated by the Double- Antibody Sandwich Enzyme-linked Immunosorbent Assay (DAS-ELISA). The BBTV was detected in all suckers prior to in vitro experiment. Results revealed that the regenerated plantlets from meristematic tissues were virus-free. This indicates that in vitro culture is a simple and the most effective tool to generate BBTV-free plants.

Keywords: Tissue culture, DAS-ELISA, BBTV, Cytological changes

INTRODUCTION

Banana is an important fruit crop in the world that is cultivated in 8,923,584 hectares, and its annual production is 182,784,070 tons. In Egypt, the total cultivated area is 95 thousand fed., and annual production is 1.29 million tons (FAO, 2021). Viruses are a major concern to banana and plantain production because of their negatively effects on yield and quality and is considered a constraint to the international exchange of Musa germplasm. Direct losses are incurred from reduced production, and indirect losses are associated with maintaining plant health, including the production of virus-free planting material. BBTV is among the top 10 viruses worldwide in terms of economic impact. One of the most important crops in the tropical and subtropical regions is the banana, Musa spp. It is grown in more than 130 countries and provides millions of people in these areas with food and income. The most harmful virus that has a catastrophic impact on the output of banana crops is the banana bunchy top virus (BBTV) (Lassois et al., 2013). BBTV was detected by PCR in samples collected from all islands except Kalimantan in Indonesian. Molecular analysis revealed that all BBTV isolates belonged to the Southeast Asian (SEA) subgroup. Based on the DNA-S and DNA-C analysis, the isolates from Sulawesi and Halmahera islands were closely related to those from the Philippines, while the remaining isolates were highly similar to those previously reported from Sumatra, Java, and Bali (Rahayuniati et al., 2021). Viral diseases are considered one of the most affecting diseases on the productivity of the banana plants due to the losses of crop quality and quantity of the banana fruits, in addition to the difficulty of exchanging the banana seedlings among the countries worldwide (Kumar et al., 2015; Rahayuniati et al., 2021). Bananas bunchy top virus (BBTV), cucumber mosaic virus (CMV), and banana streak virus (BSV) are important banana viruses; there are possible infections frequently with several viruses in the field. Since the viruses are readily transmitted by vegetative propagates, that pose a threat to banana production in banana-growing areas. BBTV genus Babuvirus, family Nanoviridae was discovered in Egypt in 1901. Meristem tip culture and chemotherapy are just a few examples of the many therapeutic in vitro techniques that have been used (Lassois et al., 2013) in Egypt, Banana bunchy top virus (BBTV) is one of the limiting factors in the production of banana crop (Magee, 1940). BBTV was first reported in Fiji Island in 1889 (Magee, 1953). BBTV endangers production in all diseased plantations, destruction occurred, and virus-free plants must be replanted. (Dale, 1987) BBTV is transmitted by the banana aphid (Pentalonia nigronevosa) in a persistent manner and also the virus is transmitted through infected plant suckers and other plant components used in banana propagation but is not sap transmissible. Thabet (2000) used double antibody sandwich-ELISA (DAS-ELISA) for detection of banana bunchy top virus (BBTV) in different parts (blade, midrib and pseudo-stem) of the infected banana plants and found that the highest concentration of BBTV in the midrib, blade and pseudo-stem respectively in the crude extract. Banana bunchy top virus (BBTV) primarily infects Musa spp., and causes banana bunchy top disease (BBTD), the most serious viral disease in global banana cultivation, according to (Aribamawa et al., 2022). Previously double antibody sandwich-ELISA (DAS-ELISA) and Dot-blot immunoassay (DBIA) used as serological methods for detection BBTV in infected samples Hu et al., (1993). El-Dougoud and El-Shamy (2011) used double antibody sandwich enzyme-linked immunosorbent
assay (DAS-ELISA) using specific polyclonal antibodies for detection of Banana bunchy top virus (BBTV) and found that the samples were infected with BBTV. Then, the meristem tip (0.3 mm) of infected samples were used in tissue culture technique for eradication BBTV and found that this technique was very effective for BBTV eradication. Genome consists of at least six components of circular single stranded DNA (cssDNA) each of about 1 kb (Xie and Hu, 1995). The cssDNA was initially known as BBTV DNA-1 to -6 but recently were renamed BBTV DNA-R, -U3, -S, -M, -C and –N (Vetten et al., 2005). However, once BBTD is established in the field, it is very difficult to eradicate or manage it. Therefore, a more sustainable way of controlling the disease is to develop host plant resistance against the virus and the vector (Jekayinoluwa et al., 2020).

The aim of the present study was to isolate and identify the Banana bunch top virus (BBTV) affecting Banana trees on the bases of symptomatology, study the cytological changes in BBTV infected banana trees and produce virus - free plants through meristem tip culture technique.

MATERIALS AND METHODS

1-Sample collection and virus isolation: From naturally infected banana trees of the cv. Williams and Grandnain in four different governorates (Qalubia, Giza, Ismailia, and Behira), three distinct types of symptoms were collected. Four hundred samples, including both healthy and infected samples, were collected in 2020 (100 samples for each government). The visual symptoms of banana bunch top disease (bunchy top, yellow margins, and dark green streaks on leaf veins and midribs) were included in the samples that were collected (Fig. 1). As a result, all samples were tested by DAS-ELISA to determine whether BBTV was present. A double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was used to test whether the samples were infected with the banana bunch top virus (BBTV) or the cucumber mosaic virus (CMV). At 405 nm, an ELISA reader (Microplate Reader Bio Tek) was used to measure the plate (Clark and Adams, 1977).

Fig. (1): BBTV naturally infected banana trees, (A): William c.v. and (B): Grandnain c.v. showing (A and B) stunting, bunchy top. (C): Yellow at the margins and dark green streaks on leaf veins and midribs.

2- Molecular detection for BBTV: -

2.1. Extraction of total nucleic acid: According to the manufacturer's instructions, the Qiagen Kit (Qiagen Sciences, USA) was used to isolate DNA from leaf samples of infected banana exhibiting typical BBTV symptoms and uninfected banana. Total nucleic acid was extracted from fresh leaf samples of banana infected with the BBTV isolate.

2.2. Detection of BBTV by Polymerase Chain Reaction (PCR): Specific primers vBBTV-1 (5'-GTTCTCCAGCTATTTCATGCCGAC-3') and eBBTV-1 (5'-CATC6CCCGACGAAATGCCGAC-3') of DNA-1 for detection of banana bunchy top virus isolate DNA-1 specific primers, replication associated protein gene was used to amplify approximately 476 bp according to Shamloul et al., (1999). PCRs were performed with a total volume of 50 μl, containing 5 μl DNA (50 ng/μl), 25 μl master mix (OnePCR™ genedirex, Cat. No. MB203-0100), 2.5 μl of each forward and reverse primer and 15 μl of nuclease-free water. The PCR programme contained 35 cycles: denaturation for 1 min at 95 °C, annealing for 1 min at 55 °C, extension for 1 min at 72 °C, and finally extension at 72 °C for 5 min. A 1.5% agarose gel was used to visualize amplified products.

3-Cytopathological effects: -

3.1. Anatomical changes: It was intended to carry out a comparative anatomical study on the leaves of banana seedling infected with BBTV in addition to healthy seedling (control) to determine the anatomical abnormalities which may occur in the stem of leaves of banana infected with BBTV. Sections of the infected and healthy leaves were made at 15-17 μm thick using rotary microtome then the small sections were taken from leaves then killed and fixed in FAA (10 ml formalin, 5 ml glacial acetic acid and 85 ml ethyl alcohols 70%), washed in 50% ethyl alcohol, dehydrated in a series of ethyl alcohols (70, 90, 95 and 100%), infiltrated in xylene embedded in paraffin wax with a melting point 60-63°c. Sections were mounted on glass slides and stained with aqueous Safranin (1%) and Fast Green (0.1% in 95% ethanol), as described by Ruzin (1999). Sections were microscopically inspected to detect histological manifestations of noticeable responses resulted from the infection.

3.2. Ultra-thin sections: Infected banana leaves tissues were examined using thin sections by transmission electron microscope. The infected leaves were cut into small pieces about 1-2 mm., fixed in 2% Gluteraldehyde in 0.1 M Na-Cacodylate buffer, pH 7.2 and subjected to a vacuum for 1-4 min every 15 min for 2 hours on ice. Prior to vacuum treatment, floating samples were poked under the buffer surface with pointed metal pokers. Rinsing took place in 0.1 M Na-Cacodylate buffer, pH 7.2 for 45 min., with buffer changes at 15 buffer surface with pointed metal pokers. Rinsing took place in 0.1 M Na-Cacodylate buffer, pH 7.2 for 45 min., with buffer changes at 15 and 30 min. Further fixation in 1% Osmium Tetraoxide in Na-Cacodylate buffer, pH 7.2, under intermittent vacuum and poking, took place for 1.5 hours (Osmont and Freeing, 2001). The samples were rinsed in the Na-Cacodylate buffer then, dehydrated through an ethanol series in buffer (35 - 50 - 70 - 80 - 95 - 100%) for 60 min. and then infiltrate with resin. Propylene: resin (no accelerator) 2:1and 1:1 for 1hr; Propylene: resin (no accelerator)
in vitro cultures of infected plants were established on standard media with mineral salts (Murashige and Skoog, 1962) (Figure 4). This medium was enriched with 30 g/l of sucrose, 2 g/l of gelrite, nicotinic acid (0.5 mg/l), pyridoxine (0.4 mg/l), thiamine (0.5 mg) and 2 mg/glycine and supplemented with a 10µM 6-benzylaminopurine (BAP) and 1µM of indole acetic acid (IAA) according to Banerjee et al. (1985, 1986) and Vuylsteke (1989) (Figure 3). Each cultivar was sub-cultured 5 times at one-month intervals. The in vitro plants were regenerated and acclimatized in the screenhouse for two months until the plantlets reached a size of 20 cm and then tested twice for BBTV by DAS-ELISA.

RESULTS
1-Virus isolation: Three types of different symptoms were collected from banana trees naturally infected with M. acuminate. cv. Grandnaine and William from four different governorates (Qalubia, Giza, Behira and Ismailia), respectively. Symptoms include visual symptoms of banana bunchy top disease (bunchy top, yellow at the margins, dark green streaks on leaf veins and midribs).

2-PCR Amplification of BBTV DNA Components: BBTV was detected using primers specific to the coat protein coding sequences and replics pair coding sequences of healthy and infected banana plants, and total DNA was successfully isolated and used as a template for direct PCR. The coat protein gene amplicon was 476 bp in the symptomatic Banana sample (Fig. 2). In a PCR combination that included DNA from healthy samples, the identical primer pair failed to produce an amplicon. From infected tissues, an important DNA fragment of the predicted size, 476 bp, was amplified (Lane 2). With sample uninfected banana leaves (Lane 1), there was no amplification; Lane N is the negative control.

Fig. (2): 1.5% Agarose gel electrophoresis analysis of BBTV amplified product for DNA-1 component using vBBTV-1- and cBBTV-1-specific primers. M: 100 bp DNA marker, Lane N: negative control, lane 1: healthy banana plant and lane 2: PCR product from BBTV DNA-1 component infected banana plant.

3-Cytological changes: -
3-1-Anatomical changes: The anatomical abnormalities which may occur in the leaves of banana seedlings infected with BBTV were determined using microtome sections. The obtained results revealed that the cells of pith, xylem, phloem, and vascular bundle were normal in the healthy control. While in the infected leaves, the cells of xylem were compacted. The number of xylem vessels was clearly reduced. Xylem and Phloem cells appear necrotized and blocked with dark stained material. The cells surrounding the vascular bundles and the cambium appear hypertrophic with undulated walls (Fig. 3)
3.2. Ultrathin section: Ultrathin sections were examined using transmission electron microscopy. Investigations reveal that mesophyll cells of BBTV-infected banana leaves showed laminated associated with vesicles, as well as degradation of chloroplast. The changes in the different tissues and cells organelles of BBTV-infected banana leaves were illustrated in (Figs. 4-7). The number and organization of chloroplasts were different in cells of infected tissues. The chloroplasts exhibited several degrees of deformation and lyses. The nucleus of the infected cell also was affected as observed to be misshapen.

3-2. Meristem tip culture: Plantlets regenerated from successfully meristem tips approximately 3 mm long were tested by visual inspection and ELISA for BBTV, and the absorbance values of meristem tips were close to those of the negative control, then the plantlets were transferred to greenhouse for acclimatization. (Figs. 8 and 9).
Cytopathological effects of banana bunch top virus (BBTV) and production of infected free banana plants using in vitro culture technique

DISCUSSION

Plant diseases caused by viruses cause substantial losses worldwide but are particularly important in the tropics and regions. The first requirement for the control of such disease is the identification of the Banana Bunchy Top virus or other viruses. Banana bunch top disease (BBTD) is the most economical disease affecting banana plants and causes severe disease, and infected plants usually do not produce any fruits or economically valuable fruits. In this study, work was conducted to investigate, detect, and identify the occurrence of BBTV in some banana samples collected under Egyptian conditions. Moreover, the distinctive characteristics of BBTV and their effect on the banana plant host (main host) were also studied, and banana bunchy top virus (BBTV) was identified. Investigating such observations revealed a Banana Bunchy Top Virus-like infection in the area. These results are in agreement with that of several authors (Thomas and Dietzgen, 1991; Espino et al., 1993; Thabet, 2000; Rezk, 2001; Yasmin et al., 2001; Hooks et al., 2009; Nelson, 2004; Selvarajan et al., 2011; Watanabe et al., 2013), dark streaks on the shoot; yellowing and dark green streaks. The representative samples were collected and tested by serological and molecular assays. Preliminary results confirmed the presence of the Banana Bunchy Top Virus, which motivated the initiation of this study. BBTV is an emerging viral pathogen that is highly virulent, very aggressive, and fast spreading, belongs to the genus Babuvirus and causes significant yield losses to banana plants and their fruit quality (Mansour et al., 2013). Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was used for serological detection of BBTV in doubtful samples collected from different governorates. The technique was performed according to Clark and Adams (1977). DAS-ELISA succeeded in detecting BBTV in 10 Behira governorate samples (40%), one Giza governorate sample (5%) and no Qalubia governorate samples (0%). DAS-ELISA was previously used to detect BBTV. Several investigations (Lestari and Hidayat, 2020; Rahayuniati et al., 2021) have established the validity of PCR as a BBTV detection technique. Hapsari et al. (2023) confirmed that 10 Indonesian banana accessions had been infected with the banana Bunchy top virus (BBTV), this study used a PCR assay with a primer from the BBTV coat protein (CP) gene. Cytological changes induced by viruses were studied in detail by examining semi-thin and ultra-thin sections under an electron microscope in host-virus combinations, specific or broad changes in ultra-structure of the cellular constituents, which represent the signature of the virus groups or even individual viruses. Moreover, in infected cells the number of chloroplasts was reduced than healthy ones. This may be due to the degradation of the chloroplasts. This finding reflects the symptoms of bunchy top on BBTV-infected leaves. Lassois et al. (2013) reported that meristem culture was the approach that most efficiently and rapidly removed phloem-associated viruses. For this approach to function, the meristematic dome of the plant must be isolated. This process requires isolating the meristematic dome of the plant under aseptic circumstances and nurturing it in the appropriate nutritious media to produce new plants free of viruses.

REFERENCES


Cytopathological effects of banana bunchy top virus (BBTV) and production of infected free banana plants using in vitro culture technique

Tأثير التغيرات السيتوئولوجية لفيروس تورد القمة في الموز على نباتات الموز وانتاج نباتات موز خالية من الفيروس باستخدام تقنية زراعة الانتشار

نادي أحمد حامد - أحمد شوقي جمال الدين - عبدالعزيز علي سلام

معهد بحوث أمراض النباتات - قسم بحوث الفيروسات والفيتوبالما - مركز البحوث الزراعية - جيزة - مصر

 جامعة قنطرة - كلية الزراعة - قسم النباتات الزراعية - الإسهامية - مصر

بعد الفيروس تورد القمة في الموز (BBTV) من أهم أمراض الموز في العالم. ركزت هذه الدراسة على إنتاج شتلات خالية من الفيروس (cv. Grandinane). وتحت تأثير علاجات مختلفة، باستخدام كورمات من الموز المصابة بـ BBTV، عرضت اصابة مثل انخفاض ملحوظ في عدد أوعية الحليب ونخر شديد في خلايا الحليب وأوعية اللحاء مع انسداد هذه الأوعية. ووجدت هذه الدراسات أن تغيرات التشريحة التي تعيش في الخلايا المصابية، تظهر عمليات انقسام التكاثر والتنقل عن طريق الفيروسات. ونجحت هذه الدراسة في تقنيات متكاملة لزراعة النباتات الخالية من الفيروسات، لتعزيز نسب التورم وتقليل نسب الفيروسات. يشير هذا إلى أن الزراعة الانتشار هي أداة مثلى وأكثر فعالية لإنتاج نباتات خالية من فيروس تورد القمة في الموز BBTV.